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Abstract Stream ecology may be influenced by the temporary trapping of solutes
in geomorphologic structures, which is usually quantified by fitting the Transient
Storage Model to tracer data. This paper explores the relationships between the
parameters of this model and those of two simpler models, namely the
Advection-Dispersion Model and the Aggregated Dead Zone model. It is motivated
by the possibility of obtaining more reliable transient storage parameter values by
correlating them with the parameters of the other models instead of evaluating them
directly. Results were obtained by fitting all three models to a set of tracer data from
mountain streams, predominantly in Iceland. Some strong correlations were found
between some of the parameters of the transient storage model and the
advection-dispersion model, but no strong correlations were found between the
parameters of the transient storage model and the aggregated dead zone model. For
all three models, combinations of the optimized parameters correctly described the
bulk movement of the solute cloud, giving confidence in the optimized parameters.
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1 Introduction

In this paper we compare three models of solute transport for mountain streams. We
examine the models’ effectiveness at describing the transport of a tracer through
many stream reaches and, by fitting them to tracer data, elucidate meaningful
parameters that describe the streams physically. The work is part of a larger study
investigating the effect of temperature and water transient storage on stream
metabolism and nutrient cycling (Friberg et al. 2009; Woodward et al. 2010;
Demars et al.2011a, b; Gudmundsdottir et al. 2011; Manson et al. 2011; Rasmussen
et al. 2011; O’Gorman et al. 2012; Hannesdottir et al. 2013). Information from 66
tracer experiments executed in several geothermal areas in Iceland (Hengill,
Hveragerdi, Hveravellir, Kerlingarfjoll, Torfajokull and Vonarskard) was combined
into a single data-set. Four additional experiments from similar geothermal and
climatic sites in Kamchatka, Russia, were also used (O’Gorman et al. 2014).

In much previous work the so-called Transient Storage Model (e.g. Bencala and
Walters 1983) has been fitted to tracer data in order to evaluate the parameters that
quantify the transient storage process. Although good fits to the data are often
achieved, questions have been raised over how well the parameters can be identified
(e.g. Wagner and Harvey 1997; Wagener et al. 2002; Worman and Wachniew
2007). Here we are motivated by the possibility of obtaining the parameters from
correlations with the parameters of alternative models. Hence we seek to explore
relationships between the parameters of the Transient Storage Model, the Advection
Dispersion Model and the Aggregated Dead Zone Model.

2 Solute Transport Models

This section provides background information on the three models used, namely the
Advection-Dispersion Model, the Transient Storage Model and the Aggregated
Dead Zone Model.

2.1 The Advection-Dispersion Model (ADM)

In the ADM, advection refers to the movement of a solute caused by the longitu-
dinal velocity of flow and dispersion refers to the longitudinal spreading of solute
that takes place simultaneously with the advection. The advection is characterised
by the cross-sectional average longitudinal flow velocity. In reality, solute is carried
faster than the average velocity in the deeper parts of a river cross-section and is
carried slower than the average velocity in the shallower parts of a river
cross-section. The longitudinal spreading is caused by the interaction between this
cross-sectional variation in longitudinal advection and mechanisms causing
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cross-sectional mixing, which also vary throughout the cross-section. In the model,
turbulent diffusion and secondary currents are responsible for the cross-sectional
mixing. The overall spreading effect is quantified by the dispersion coefficient and
the process is often termed shear flow dispersion. Once a solute cloud has been
evolving for long enough in a steady, longitudinally uniform, turbulent flow field
Taylor (1954) showed that the ADM applies to the cross-sectional average con-
centration of a conservative solute and that the magnitude of the dispersion coef-
ficient is controlled by the details of the velocity and mixing fields. His model
(originally derived for flows in pipes) is described by the following equation:

Oc(x, 1) Jc(x,t) 0%c(x, 1)
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where c is the cross-sectional average solute concentration, U sp is the cross-sectional
average longitudinal flow velocity, D ap is the dispersion coefficient, t is time and x is
the longitudinal co-ordinate direction.

Fischer (1967) showed that since rivers have large aspects ratios the transverse
variations in longitudinal velocity and cross-sectional mixing are much more
important than the corresponding vertical variations. Consequently much use is
made of vertically averaged flow and mixing parameters when dispersion coeffi-
cients in rivers are estimated from flow and mixing parameters, see e.g. Rutherford
(1994); Wallis and Manson (2004). An advantage of the ADM is access to easily
applied analytical solutions of Eq. (1). On the other hand these solutions do not
always fit observations well.

2.2 The Transient Storage Model (TSM)

The TSM is an extended version of the ADM, and its origins can be traced back
over about 50 years. The earliest need to modify the ADM stemmed from work in
pipes and channels which suggested that the storage and slow release of solute by
laminar boundary layers might explain some discrepancies between observations
and model predictions (Taylor 1954; Elder 1959). In rivers a similar mechanism
was attributed to dead zones which were originally associated with “pools and
stagnant areas, or both, cause by debris or unevenness of the banks or bottom”
(Thackston and Krenkel 1967). Further evidence from rivers, see e.g. Nordin and
Sabol (1974) and Day (1975), suggested that observed concentration-time profiles
were not predicted well by the ADM. More recently, several other geomorphologic
features, such as pool-riffle structures (e.g. Bencala and Walters 1983) and inter-
actions between a river channel and the surrounding hyporheic zone (e.g. Elliott and
Brooks 1997) have been added to dead zones, and the term transient storage is now
often used to describe the effects of a range of storage phenomena on solute
transport in rivers (Worman 2000; Wallis et al. 2013).
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The TSM is described by two equations, one representing solute transport in the
main river channel, including advection, dispersion and the effect of the storage
zones, and the other representing a dynamic mass balance of solute in the storage
zones themselves. In these equations a first-order exchange mechanism is used to
describe the transport of solute between the main channel and the storage zones
(and back again) and the solute is assumed to behave conservatively. Several
slightly different formulations of the equations have appeared in the literature since
their first appearance (Thackston and Krenkel 1967), see e.g. Bencala and Walters
(1983), Rutherford (1994), Worman (2000), Deng et al. (2010), Bottacin-Busolin
et al. (2011) and Wallis et al. (2013). These reflect various issues such as the choice
of geometric variables used, the inclusion of lateral inflow, the interpretation of the
transient storage process(es) and the presence of variable time scales over which the
transient storage takes place. The model equations used in this work, assuming
steady and longitudinally uniform flow, are:

dc(x, 1) Oc(x,t) *c(x, 1)
o + Urs o Dry o2 + ki (s(x, 1) — c(x,1)) (2)
Os(x,t)
or _kz(s(xv t) - C()C7 t)) (3)

where Urg is the cross-sectional average flow velocity in the main channel, Drg is

the dispersion coefficient in the main channel, k; and k, are model parameters (see

below), s is the solute concentration in the storage zones and the other symbols are

as previously defined. Note that the velocity and dispersion appearing in Eq. (3) are

not necessarily the same as the corresponding parameters appearing in Eq. (1).
The model parameters introduced above are defined as:

kIZOC (4)
A

ky = ki — 5

=k (5)

where a is the exchange rate between the main channel and the storage zones, A is
the cross-sectional area of the main channel and Ag is the cross-sectional area of the
storage zones. The model is often successful in fitting observations, but the inter-
pretation of the transient storage parameters is not straightforward, particularly
when different combinations of parameter values yield very similar outputs.

2.3 The Aggregated Dead Zone Model (ADZM)

Similarly to the origins of the TSM, the ADZM was developed because of reported
deficiencies of the ADM. In a radical departure from previous work, it was pos-
tulated (Beer and Young 1983) that the dispersion occurring in dead zones
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dominated the shear flow dispersion. Hence a model could be constructed on the
basis of transient storage only. Or more pragmatically, the effects of all dispersive
mechanisms in a river reach could be amalgamated and represented by a single
effective dead zone. A further radical approach was to formulate the model only in
the time domain (by spatial integration of the physical processes). This had several
consequences, e.g. a much simpler mass balance equation than either the ADM or
TSM and access to powerful model calibration techniques via time-series analysis
(Young 1984).

The model resembles simple hydrologic models for flood propagation in rivers,
many of which are based on the concept of storage routing (Young and Wallis
1985; Shaw et al. 2011). Importantly, however, the ADZM includes an explicit time
delay to cater for the purely advective transport processes. The transport of a
conservative solute in steady flow is described by the following equation:

D) L (0wt — =) — 0,1 (©
where y(t) and u(t-t) are the cross-sectional average solute concentrations at the
downstream and upstream ends of a river reach, respectively, t is the time delay, V
is the volume of the aggregated dead zone and Q, and Q, are, respectively, the flow
rates at the downstream and upstream ends of the reach. In practical terms: 7 is the
minimum reach travel time (time interval between the first arrival of solute at the
two ends of the reach); Tapz (V/Qy) is the time solute spends in the aggregated
dead zone; and the sum of Tt and Tppy, is the ADZ travel time. Wallis (1994)
showed that ADZ travel time is theoretically equal to the time interval between the
centroids of temporal solute concentration profiles at the two ends of a reach.

Several studies have shown that the ADZM is able to reproduce solute transport
in rivers very satisfactorily (Wallis et al. 1989; Green et al. 1994; Lees et al. 2000).
However, the fact that the model’s parameters are not related to the traditional
concepts of advection and dispersion may be considered a disadvantage (Rutherford
1994). On the other hand, both the time delay and the residence time for a reach
have been found to vary with flow rate in a physically realistic way, both decreasing
as flow rate increases (Wallis et al. 1989; Green et al. 1994).

3 Data Collection

For each experiment, YSI-600xIm multiparameter sondes (YSI, Yellow Spring,
USA) were placed at two longitudinal stations (typically about 60 m apart) in the
study stream and set to record conductivity at a fixed time interval (typically around
2-10 s). Pre-weighed NaCl was fully dissolved in a small amount (typically 2 L) of
stream water and then immediately released into the stream at some distance
upstream of the upper station. Generally the initial mixing zone was sufficiently
long (typically about 10-20 m) for complete cross-sectional mixing to take place
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before the upper station. In the shortest reaches, additional deflectors and pools
were created upstream of the upper station to increase mixing. Any naturally
occurring background conductivity signal was subtracted from the observations
prior to the modelling. The flow rates at the stations were evaluated via dilution
gauging, and the upstream and downstream temporal conductivity profiles were
analysed to elucidate stream transport parameters, as described below. The median
(range) stream characteristics were: width 0.9 (0.2-3.6) m, depth 6 (1-23) cm,
Ve}ocity 15 (1=-52) cm s}, reach length 36 (13—-107) m and flow rate 7 (0.2-70) L
S

4 Application of Models

Equation (1) and equation system (2/3) were solved using a finite volume approach
in space, evaluating the advection term explicitly in time and evaluating the dis-
persion and transient storage terms implicitly in time. The DISCUS method (Wallis
et al. 1998; Manson and Wallis 1999; Manson and Wallis 2000; Manson et al.
2001) was used for the advective terms in Egs. (1) and (2) and the Crank-Nicolson
method (Press et al. 1992) was used for the dispersion terms in Egs. (1) and (2) and
for the transient storage term in Eq. (2). The rationale behind these choices is that
both methods are individually well-suited, being unconditionally stable and robust,
for those particular terms, respectively. Equations (3) and (6) were solved using the
Crank-Nicolson method.

The models were fitted to the observations by parameter optimization, min-
imising the sum of squared residuals, SSR, by a modified Levenberg-Marquardt
algorithm (Press et al. 1992). A Python script was used to undertake the minimi-
sation by calling C code implementations of the three models. Python and C were
linked using the BOOST library. Only main channel concentration was used for the
fitting because concentrations in the storage zones were not measured.
A normalised fitting parameter (NRMSE) was defined for comparing the perfor-
mance of the models to different data sets, defined by:

0.5
NRMSE — — (53R (7)
maX(C()Bs) N

where N is the number of data points and Cogg refers to the observed concentration
profile. To aid the identification of the best model for any individual data set,
allowing for a penalty for using more parameters than were justified, the Akaike
Information Criterion (AIC) was calculated (assuming the Gaussian case) using:

R
AIC = 2k+N In (%) (8)
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where k is the number of estimated parameters, including the residual error term
(Burnham and Anderson 2002). The best model has the smallest AIC. For the TSM
a and Ag/A were evaluated from the optimized values of k; and k, using Eqgs. (4)
and (5). The effect of lateral inflow was included in the ADM and TSM by adding
the term -qc(X,t)/A to the right-hand sides of Egs. (1) and (2). The lateral inflow
rate, ¢, was known from the upstream and downstream flow rates and A was
estimated from the flow rates and the centroid velocity (see Sect. 5).

5 Results and Discussion

All three models were successfully optimized to the great majority of the 70 sets of
tracer data. A few cases failed (5 with the ADM, 9 with the TSM, 5 with the
ADZM) either due to inherent problems with the data or due to convergence
problems during optimization. Results are presented in various ways below.
Figure 1 shows the goodness of fit of the successfully optimized models to all the
data. The mean goodness of fit for each model across all the data is also shown.
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Fig. 1 Comparison of goodness of fit
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Although there is a lot of scatter, it is clear that the TSM tends to fit the data best
(mean NRMSE of ~0.01). The ADE and ADZ models achieve a similar average
goodness of fit to each other (mean NRMSEs of ~0.03), which is significantly
larger than the mean value for the TSM. This is expected because, with 4 param-
eters, the TSM has a greater ability to represent the finer detail of the solute
transport processes than either of the two 2-parameter models. However, it is
important to guard against the possibility of over-fitting. Hence values of the AIC
were also considered. These showed that in nearly all cases the order of model
preference was TSM, ADZM and ADM. In a few cases, corresponding with little
transient storage activity, the ADM was preferred to the other two models.
Figure 2 shows correlations between logarithms of the parameters of the TSM
and the ADM. Arbitrarily assuming that a correlation coefficient (absolute
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Fig. 2 Comparison of TSM and ADM parameters (with correlation coefficients)
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value) > ~ 0.6 indicates a strong correlation, relationships exist between Urg and
Uap, @ and Upp, Utg and Dap, and Dtg and D4p. The correlations between the
two velocities and the two dispersion coefficients are expected. In general
Urs > Uap because in the ADM the retardation of longitudinal tracer transport due
to transient storage can only be accounted for by Uup. Similarly, in general
Dts < Dap because in the ADM dispersion caused by transient storage can only be
accounted for by Dap. The range of velocity values (0.02-0.5 ms™') is a conse-
quence of the different slope, roughness and flow rate of the streams, and the range
of the dispersion coefficients (0.03—0.7 m?s™") is typical for the stream size (Heron
2015).

The correlation between o and Uap is consistent with the idea that the boundary
layer across which solute exchange takes place decreases as velocity increases.
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Fig. 4 ADM velocity vs 0.5 -
centroid velocity
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Although it is interesting that there appears to be a relationship between Urg and
Dap, it is of little practical value since Utg is more strongly correlated with Uap.
Values of a and Ay/A are typical of those found in previous applications of the TSM
to mountain streams, see e.g. D’Angelo et al. (1993) and Gooseff et al. (2003).

Using the same criterion as above for identifying strong correlations, Fig. 3
suggests there are no relationships between the logarithms of the parameters of the
TSM and the ADZM. Interestingly, however, two of the largest correlation coef-
ficients are between Urg and T and a and 1. Since we might expect time delay to be
correlated with velocity, these are consistent with the relationships identified from
Fig. 2. Finally, it is worth reporting that the range of values of the ratio of residence
time to reach mean travel time (Taopz/(T + Tapz)), known as the dispersive fraction,
(0.1-0.6) is consistent with previous work (Wallis et al. 1989; Green et al. 1994;
Guymer 2002).

Figures 4, 5 and 6 compare various advective transport parameters against the
movement of the centre of mass of the solute cloud. The latter was evaluated from
the centroids of the upstream and downstream temporal tracer concentration pro-
files, giving estimates of centroid travel time, tc, and centroid velocity, Uc. Both of
these are independent of the ADM, TSM and ADZM. Figure 4 suggests a
one-to-one relationship between U,p and Uc, indicating that the ADM correctly
describes the bulk transport of the solute cloud. Figure 5 shows a modified TSM
velocity plotted against Uc. The modification reduces Urg by an amount that
reflects the effect of the transient storage (Czernuszenko and Rowinski 1997;
Worman 1998; Lees et al. 2000). The figure suggests that the combination of the
optimized TSM parameters correctly describes the bulk transport of the solute
cloud. Figure 6 shows the ADZ travel time plotted against tc. Again the



A Comparison of Three Solute Transport Models ... 87

Fig. 5 Modified TSM 0.5 -
velocity vs centroid velocity
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combination of the optimized parameters correctly describes the bulk transport of
the solute cloud. Overall, the good agreement between these velocities and travel
times suggests that the optimized parameter values are robust.
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6 Conclusions

Three solute transport models were optimized to a large number of sets of tracer
data collected in similar mountain streams. The TSM consistently fitted the tracer
data better than either the ADM or the ADZM: the ADZM performed a little better
than the ADM. Apparently useful correlations were found between the logarithms
of some of the parameters of the TSM and the ADM, but no useful correlations
were found between the parameters of the TSM and the ADZM. For all three
models, combinations of the optimized parameters correctly described the bulk
movement of the solute cloud, giving confidence in the optimized parameters.
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