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Description of a conceptual Bayesian network with illustrative probabilities
The Bayesian network (BN) provides a mathematical platform to determine the probabilities of phytoplankton bloom as a function of a set of interrelated causes.  Water managers can manipulate the BN to quantify this risk under different scenarios, e.g. to simulate alternative desirable ecosystem services (Fig. S1, Fig. 3A in main text). Water managers may also set the risk of phytoplankton bloom (endpoint) to a specific target and see how probabilities are affected backwards throughout the whole BN (Fig. 3B in main text), identifying key nodes on which the set target depends.
One major short-term consequence of cutting aquatic plants is to increase the risk of phytoplankton bloom (Kuiper et al., 2017). While simple models of alternative stable states can generate new insights into general system behaviour (Scheffer et al., 1993), trophic interactions are important to understand short term system dynamics for management purposes (Hu et al., 2016). The dimensionality of consumer search space can drive trophic interactions strengths and food web stability (Pawar, Dell & Savage, 2012;  Graham et al., 2015;  Genkai-Kato, 2007). The structuring role of aquatic plants in trophic interactions is equally relevant in lakes (Jeppesen et al., 1998;  Bronmark, 1994;  Schriver et al., 1995) and rivers (Harrison, Bradley & Harris, 2005;  Parker et al., 2007;  Graham et al., 2015).
Here we provide the details of the BN, with our rational for assigning causal relationships and key references. Phytoplankton development will be highly dependent (i) on the type of ecosystems (flowing or standing water with submerged plants, standing water with floating plants) and the degree of plant removal (none, partial, full), and (ii) on the balance between resources (growth potential) and disturbances (loss processes) – Reynolds (1984)

In this BN, the state probabilities of phytoplankton (Table S1) development were conditioned symmetrically from the parent nodes resources and disturbances to recognise their equivalent strength for equivalent set of states. For example, high resources and low disturbances will very likely (100%) produce a phytoplankton bloom, while low resources and moderate disturbances will likely result in low (75%) to moderate (25%) phytoplankton abundance. 
Resources (growth potential, Table S2) may include light and nutrient loading (C, N, P) and benthic fish foraging. The latter can resuspend the sediment, increase nutrient supply and phytoplankton growth (Matsuzaki et al., 2009), assuming it does not substantially affect light availability. 
Disturbances (removal of biomass, Table S3) may be characterised by predation (zooplankton) and turbulence and water retention time (flow) conditions in rivers and lakes (Bernes et al., 2015;  Reynolds, 2000;  Gallardo et al., 2009). Note, we did not consider the role of allelopathic interactions (see Gross, 2003;  Van Donk & van de Bund, 2002).
Plant removal and ecosystem types will affect flow (turbulence, water renewal; Table S4) and light (Table S5) directly. Aquatic plant removal in all freshwater ecosystems will affect benthic fish foraging and zooplankton through changes in benthic and pelagic trophic interactions. 
[bookmark: _Hlk57185821][bookmark: _Hlk60942402]Aquatic plant architecture affects macroinvertebrate richness, abundance and functional feeding groups (e.g. Taniguchi, Nakano & Tokeshi, 2003;  Demars et al., 2012;  Hansen et al., 2011). When aquatic plants are removed so are epiphytes and likely most of the grazers, depriving fish (Jones & Sayer, 2003;  Bécares et al., 2008). Fish can rapidly change their mode of foraging when prey density suddenly decline (e.g. Fausch, Nakano & Kitano, 1997) and may shift to benthic foraging (Table S6) when supply of epiphytic invertebrates (Table S7) dwindles in response to total removal of macrophytes or in ecosystems dominated by floating plants (Kornijów, Measey & Moss, 2016;  Carpenter, van Donk & Wetzel, 1998). Phytoplankton blooms are also dependent on the trophic cascade piscivorous fish (Table S8) > planktivorous fish (Table S9) > zooplankton (Table S10) > phytoplankton, as seen through whole lake biomanipulations (Bernes et al., 2015).
The extent of aquatic plant removal (Table S11) will differ according to the desirability of specific ecosystem services.
Conditional probability tables used in the BN (Table S1 to S9) were derived from general knowledge in ecology (op. cit.) and Appendix 1, but remain hypothetical and should only be used for illustrative purpose.
[bookmark: _GoBack][image: ]
Figure S1. Conceptual diagram of key determinants influencing phytoplankton abundance. Symbols in the figure are from the Integration and Application Network, Univ. of Maryland Center for Environmental Science (ian.umces.edu/symbols/).  
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Table S1. Conditional probability table (in %) for phytoplankton abundance with respect to disturbance and resources. Rational: resources and disturbances could play an equal role, as reflected in the symmetry of the conditional probabilities.
	
	 
	Phytoplankton

	Resources
	Disturbances
	Low
	Moderate
	High

	Low
	Low
	50
	50
	0

	Low
	Moderate
	75
	25
	0

	Low
	High
	100
	0
	0

	Moderate
	Low
	0
	50
	50

	Moderate
	Moderate
	0
	100
	0

	Moderate
	High
	50
	50
	0

	High
	Low
	0
	0
	100

	High
	Moderate
	0
	50
	50

	High
	High
	0
	100
	0





Table S2. Conditional probability table (in %) for resources with respect to light, nutrient loading and benthic fish foraging. Rational: Low light only allows a maximum of 50% moderate resources whatever nutrient loading and benthic fish foraging. High light allows for maximum exploitation of other resources and 100% high resources. Under high light, nutrient loading plays a major role, with fish benthic foraging playing a subordinate additional role, 25-75% moderate resource under low nutrient loading, decreasing to 25-45% high resource under moderate nutrient loading, and playing no additional role under high nutrient loading.
	
	
	
	Resources

	Light
	Nutrient loading
	Benthic fish foraging
	Low
	Moderate
	High

	Low
	Low
	Low
	100
	0
	0

	Low
	Low
	Moderate
	90
	10
	0

	Low
	Low
	High
	80
	20
	0

	Low
	Moderate
	Low
	75
	25
	0

	Low
	Moderate
	Moderate
	70
	30
	0

	Low
	Moderate
	High
	65
	35
	0

	Low
	High
	Low
	50
	50
	0

	Low
	High
	Moderate
	50
	50
	0

	Low
	High
	High
	50
	50
	0

	High
	Low
	Low
	75
	25
	0

	High
	Low
	Moderate
	50
	50
	0

	High
	Low
	High
	25
	75
	0

	High
	Moderate
	Low
	0
	75
	25

	High
	Moderate
	Moderate
	0
	65
	35

	High
	Moderate
	High
	0
	55
	45

	High
	High
	Low
	0
	0
	100

	High
	High
	Moderate
	0
	0
	100

	High
	High
	High
	0
	0
	100





Table S3. Conditional probability table (in %) for disturbance with respect to flow (i.e. turbulence and water renewal) and zooplankton abundance. Rational: Flow was set as a primary control, with biomass removal exceeding zooplankton growth. Thus, high zooplankton was not possible under moderate flow, and similarly zooplankton could only be in low abundance under high flow. Impossible combinations of states were indicated with crosses (x). 
	
	 
	Disturbance

	Flow
	Zooplankton
	Low
	Moderate
	High

	Low
	Low
	100
	0
	0

	Low
	Moderate
	0
	100
	0

	Low
	High
	0
	75
	25

	Moderate
	Low
	0
	100
	0

	Moderate
	Moderate
	0
	50
	50

	Moderate
	High
	x
	x
	x

	High
	Low
	0
	0
	100

	High
	Moderate
	x
	x
	x

	High
	High
	x
	x
	x





Table S4. Conditional probability table (in %) for flow with respect to plant removal and ecosystem. Rational: Standing submerged may also represent ponded sections of river under drought conditions. Low water retention time (or high water renewal) in flowing submerged ecosystems does not allow plankton to develop, except in some small pockets, e.g. large rivers, connected backwaters and impounded sections (Reynolds, 2000;  Neal et al., 2006;  Soballe & Kimmel, 1987). The effects of partial and full removal of submerged plants were partly derived from experimental results summarised in Appendix 1, section hydraulics / rivers.
	
	 
	Flow

	Plant removal
	Ecosystem
	Low
	Medium 
	High

	No
	Standing floating
	100
	0
	0

	No
	Standing submerged
	100
	0
	0

	No
	Flowing submerged
	75
	25
	0

	Partial
	Standing floating
	100
	0
	0

	Partial
	Standing submerged
	100
	0
	0

	Partial
	Flowing submerged
	0
	50
	50

	Full
	Standing floating
	100
	0
	0

	Full
	Standing submerged
	100
	0
	0

	Full
	Flowing submerged
	0
	0
	100






Table S5. Conditional probability table (in %) for light (in the water column) with respect to plant removal and ecosystem type. Rational: High light represents favourable light conditions for phytoplankton growth when macrophyte cover is low.

	
	 
	Light

	Plant removal
	Ecosystem
	Low
	High

	No
	Standing floating
	100
	0

	No
	Standing submerged
	50
	50

	No
	Flowing submerged
	50
	50

	Partial
	Standing floating
	50
	50

	Partial
	Standing submerged
	25
	75

	Partial
	Flowing submerged
	25
	75

	Full
	Standing floating
	0
	100

	Full
	Standing submerged
	0
	100

	Full
	Flowing submerged
	0
	100




Table S6. Conditional probability table (in %) for benthic fish foraging with respect to epiphytic invertebrates. Rational: a simple inverse relationship was assumed, together with feeding plasticity in fish species present.
	
	Benthic fish foraging

	Epiphytic invertebrates
	Low
	Moderate
	High

	Low
	0
	0
	100

	Moderate
	0
	100
	0

	High
	100
	0
	0




Table S7. Conditional probability table (in %) for epiphytic invertebrates with respect to plant removal and ecosystem.
	
	 
	Epiphytic invertebrates

	Plant removal
	Ecosystem 
	Low
	Moderate
	High

	No
	Standing floating
	75
	25
	0

	No
	Standing submerged
	0
	25
	75

	No
	Flowing submerged
	0
	25
	75

	Partial
	Standing floating
	50
	50
	0

	Partial
	Standing submerged
	25
	75
	0

	Partial
	Flowing submerged
	25
	75
	0

	Full
	Standing floating
	25
	50
	25

	Full
	Standing submerged
	100
	0
	0

	Full
	Flowing submerged
	100
	0
	0





Table S8. Conditional probability table (in %) for piscivorous fish predation with respect to plant removal and piscivorous fish. Rational: without plant removal, fish predation should be low because piscivorous fish cannot hunt efficiently within dense macrophyte beds. With a partial removal, fish production may be optimised through the provision of refugia for planktivorous fish, and space for piscivorous fish to hide and hunt at edge of patches. With full plant removal, predator avoidance by planktivorous fish is severely impaired and piscivorous fish predation should be high (at least in the short term). 
	
	
	Piscivorous fish predation

	Plant removal
	Piscivorous fish
	Low
	High

	No
	Absent
	100
	0

	No
	Present
	100
	0

	Partial
	Absent
	100
	0

	Partial
	Present
	50
	50

	Full
	Absent
	100
	0

	Full
	Present
	0
	100



Table S9. Conditional probability table (in %) for planktivorous fish with respect to piscivorous fish predation. Rational: The trophic cascade effect of piscivorous fish has been well documented (see Fig. 13, 14 in Bernes et al., 2015).
	
	Planktivorous fish

	Piscivorous fish predation
	Low
	High

	Low
	0
	100

	Moderate
	50
	50

	High
	100
	0




Table S10. Conditional probability table (in %) for zooplankton with respect to flow and planktivorous fish. Rational: Zooplankton abundance will be primarily constrained by turbulence and water renewal (flow), with additional pressure through predation by planktivorous fish (Bernes et al., 2015). High flow exceeds the growth potential of zooplankton, and thus zooplankton abundance remains low.
	
	Zooplankton

	Flow
	Planktivorous fish
	Low
	Moderate 
	High

	Low
	Low
	0
	0
	100

	Low
	High
	50
	50
	0

	Moderate
	Low
	0
	100
	0

	Moderate
	High
	75
	25
	0

	High
	Low
	100
	0
	0

	High
	High
	100
	0
	0



Table S11. Conditional probability table for plant removal with respect to ecosystem services (Verhofstad & Bakker, 2019). Rational: Aquatic plants are often removed in rivers to facilitate water flow (see Appendix 1, section hydraulics / rivers) in order to prevent local flooding or for irrigation or hydropower (50% plant cover is a nuisance for hydropower. Aquatic plant removal is also often for recreational activities such as angling (>50% plant cover is considered a nuisance for fishing; 20-40% cover may be optimal for stable fish population), swimming (10% plant cover considered a nuisance) and boating (5% plant cover considered as a nuisance). Aquatic plants may not be removed from bird sanctuaries (https://www.nrk.no/vestland/fjernar-ugras-med-flytande-plenklippar-1.15213486, in Norwegian) or nutrient retention.  
	
	Plant removal

	Ecosystem services
	No
	Partial
	Full

	Flooding
	0
	25
	75

	Bird watching
	100
	0
	0

	Nutrient retention
	75
	25
	0

	Angling
	0
	100
	0

	Swimming
	0
	25
	75

	Boating
	0
	0
	100

	Irrigation
	0
	25
	75

	Hydropower
	0
	50
	50

	Invasive species
	0
	0
	100
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